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ABSTRACT

Context. The butterfly diagram of the solar cycle exhibits a poleward migration of the diffuse magnetic field resulting from the decay
of trailing sunspots. It is one component of what is sometimes referred to as the "rush to the poles" and is responsible for the reversal
and build up of the polar cap fields.
Aims. We investigate under which conditions the rush to the poles can be reproduced in flux-transport Babcock-Leighton dynamo
models. We also consider other observational consequences of the different mechanisms for reproducing the rush to the poles.
Methods. We identify three main ways to achieve the rush to the poles: a flux emergence probability that decreases rapidly with
latitude; a threshold in subsurface toroidal field strength below which the toroidal flux emerges only slowly and above which the
emergence rate is high; and an emergence rate which depends on the mean magnetic field squared, mimicing magnetic buoyancy. We
implement these three mechanisms in a 2D Babcock-Leighton flux transport dynamo model incorporating toroidal flux loss and deep
downward turbulent pumping. Moreover, we directly compare the observational sunspot zone migration law with what our models
predict.
Results. We find that all three mechanisms lead to solar-like butterfly diagrams, but which present notable differences between
them. The shape of the butterfly diagram is very sensitive to model parameters for the threshold prescription, while most models
incorporating magnetic buoyancy converge to very similar butterfly diagrams, with butterfly wings widths of ≲ ±30◦, in very good
agreement with observations. With turbulent diffusivities above 35 km2/s but below about 40 km2/s, buoyancy models are strikingly
solar-like. The threshold and magnetic buoyancy prescriptions make the models non-linear and as such can saturate the dynamo
through latitudinal quenching – where emergences at higher latitudes are less efficient at transporting field across the equator and
hence less efficient in reversing the polar fields – although only the latter can do so when emergence loss is turned off. The period of
the models involving buoyancy is independent of the source term amplitude, but emergence loss increases it by ≃ 60%. The models,
with the right advection amplitude and turbulent diffusivity, match very well the observational equatorward migration law.
Conclusions. For the rush to the poles to be visible, a mechanism suppressing (enhancing) emergences at high (low) latitudes must
operate. It is not sufficient that the toroidal field be stored at low latitudes for emergences to be limited to low latitudes. Magnetic
buoyancy appears to be the most promising non-linearity as models incorporating it produce the most solar-like butterfly diagrams,
with the exact width of the butterly wings being roughly independent of model parameters. Dynamo saturation is achieved by a
competition between latitudinal quenching and a quenching due to the tilt of the mean bipolar magnetic region. From these models
we infer that the Sun is not in the advection-dominated regime, but also not in the diffusion-dominated regime. The cycle period
is set through a balance between advection, diffusion and flux emergence, in a way that agrees with the observational sunspot zone
migration law. The latter seems to imply that the toroidal field is indeed stored in the equatorial region of the lower convection zone.

Key words. Sun: magnetic fields – Sun: activity – Sun: interior

1. Introduction

The solar cycle is understood as being driven by a self-exciting
fluid dynamo located somewhere inside the convection zone of
the Sun (e.g. Charbonneau 2014). Cloutier et al. (2023, hereafter
Paper I) have built a 2D Babcock-Leighton (BL) flux-transport
dynamo (FTD) model that could self-consistently produce rel-
atively narrow butterfly wings, without imposing a preference
for emergences to take place at the observed low latitudes. This
was achieved through turbulent pumping reaching deep down
to the location where the meridional flow changes direction.
However, they found that this linear BL FTD model lacked the
so-called "rush to the poles" (Ananthakrishnan 1954; Altrock
1997), which we, in the dynamo context, define as the poleward
migration of the diffuse magnetic field resulting from the decay
of the trailing sunspots.

Surface flux transport (SFT) models (Yeates et al. 2023) re-
produce well the rush to the poles. In these models, observed or
modeled active regions are deposited on the surface where they
are passively transported by advection and diffusion. The rush to
the poles is hence a consequence of the properties of observed
emergences. In FTD models, the properties of emergences are a
property of the model, and depend on how the emergence pro-
cess is parametrized. As such, and as shown in Paper I, they do
not necessarily reproduce the rush to the poles.

The questions we address in this paper are which proper-
ties of the observed emergences are necessary to reproduce the
rush to the poles and what are the constraints it places on the
dynamo process (particularly the conversion of the toroidal to
poloidal flux). We identify three possible mechanisms by which
the rush to the poles can be achieved: a latitudinal sunspot emer-
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gence probability caused by stability of the toroidal field at mid-
to high latitudes (e.g. Karak & Cameron 2016, and references
therein; see also Kitchatinov 2020), a threshold in subsurface
toroidal field strength between a slow and a fast regime of flux
emergence (Cameron & Schüssler 2020; Biswas et al. 2022), and
a proportionality of the emergence rate to a power of the ratio of
the toroidal to equipartition magnetic field strengths, the latter
mechanism being motivated by magnetic buoyancy (Stix 1972;
Parker 1975; Unno & Ribes 1976).

Lastly, we note that the location of maximal toroidal flux
density is a good proxy for the central latitude of the sunspot belt,
so that the equatorward drift of the former can therefore be com-
pared to the observed drift of the latter. This migration has been
shown by Waldmeier (1939, 1955) to be universal regardless of
cycle strength, the functional form of which was determined by
Hathaway (2011).

2. Model

2.1. Dynamo equations

The model we use is the same as in Paper I. The equations we
solve are the 2D axisymmetric mean-field dynamo equations
for the ϕ-component of the poloidal vector potential A and the
toroidal component B of the large-scale magnetic field:

∂A
∂t
= −

up

ϖ
· ∇(ϖA) + η

(
∇2 −

1
ϖ2

)
A + S , (1)

∂B
∂t
= −ϖup · ∇

( B
ϖ

)
+ η

(
∇2 −

1
ϖ2

)
B +

1
ϖ

∂(ϖB)
∂r

dη
dr

− B∇ · up +ϖ[∇ × (Aêϕ)] · ∇Ω − L,
(2)

whereϖ = r sin θ. The effective meridional velocity up = um+γ
is the sum of the meridional flow um and turbulent pumping
γ, Ω is the local rotation rate (including differential rotation),
η is the turbulent diffusivity, and S and L are the BL source
and loss terms, respectively. A feature of our model is the in-
clusion of this toroidal field loss term; it is associated with the
emergence of active regions, which give rise to the BL mech-
anism. Such a loss term was taken into account in the original
model of Leighton (1969), but it was quickly abandoned as it was
deemed not to be of significance to the magnetic budget of the
Sun. However, this assumption was recently shown to be wrong
by Cameron & Schüssler (2020), as they determined the corre-
sponding timescale to be commensurate with the 11-year solar
cycle. This observational result was further found to be naturally
reproduced with the linear loss term of Paper I.

2.2. Differential rotation and meridional circulation

For the differential rotation profile we here use the helioseis-
mic measurement of Larson & Schou (2018) obtained from HMI
data, which is shown in the left panel of Fig. 1. We do not apply
any sort of mask to the profile to "correct" for the high latitudes
(e.g. Muñoz-Jaramillo et al. 2009), although the exact rotation
rate at these latitudes is rather important (cf. Paper I).

The meridional flow profile we use is the same as in Paper I
and is shown in the right panel of Fig. 1. It is constructed from
the helioseismic inversions of Gizon et al. (2020) by symmetriz-
ing the profiles of cycles 23 and 24 across the equator and av-
eraging them. The dotted line represents the location where the
meridional flow changes directions at a radius of about 0.8R⊙.

Fig. 1. Rotation profile of Larson & Schou (2018) obtained from HMI
data (left) and cycle-averaged and symmetrized stream function of the
helioseismic meridional flow inversions of Gizon et al. (2020, right). For
the latter, positive values represent clockwise circulation and negative
anticlockwise. The dash-dotted and dotted lines represent the approxi-
mate locations of the tachocline at 0.7R⊙ and reversal of the meridional
flow direction at 0.8R⊙, respectively.

The toroidal field is in our models essentially stored below that
depth as our turbulent pumping profile reaches down to and stops
at that depth (see the next section and Paper I for a discussion).

2.3. Parameterization of turbulent effects

The turbulent parameterizations are the same as in Paper I (see
also references therein). The turbulent diffusivity profile is ex-
pressed as

η(r) = ηRZ+
ηCZ − ηRZ

2

[
1 + erf

(
r − 0.72R⊙
0.012R⊙

)]
+
ηR⊙ − ηCZ − ηRZ

2

[
1 + erf

(
r − 0.95R⊙

0.01R⊙

)]
,

(3)

where ηRZ = 0.1 km2/s, ηR⊙ = 350 km2/s and ηCZ are respec-
tively the radiative core, surface, and bulk values of the tur-
bulent diffusivity. It was found in Paper I that, in this class of
models, bulk diffusivities significantly larger than 10 km2/s are
not possible because the large radial shear of the observed deep
meridional flow gives rise to an effective diffusivity as high as
≃ 150 km2/s. For most of the models presented in this paper, the
value of ηCZ is thus fixed at 10 km2/s. It will however be shown
that the bulk diffusivity can be significantly increased in the non-
linear models, particularly those invoking magnetic buoyancy.

For turbulent pumping we again use the following single step
profile:

γ = −
γ0

2

[
1 + erf

(
r − rγ

0.01R⊙

)]
êr, (4)

where rγ = 0.785R⊙ corresponds to the depth at mid-latitudes
where the meridional flow changes direction.

2.4. BL source and loss terms

The BL source and loss terms are given by:

S (r, θ, t) = f S
r (r) sinn θ sin δ

b(θ, t)/R⊙
τ0

, (5)

L(r, θ, t) = f L
r (r) sinn θ cos δ

B(r, θ, t)
τ0

, (6)

Article number, page 2 of 12



S. Cloutier et al.: The rush to the poles and the role of magnetic buoyancy in the solar dynamo

where:

f S
r (r) =

1
2

[
1 + erf

(
r − 0.85R⊙

0.01R⊙

)]
, (7)

f L
r (r) =

1
2

[
1 + erf

(
r − 0.70R⊙

0.01R⊙

)]
, (8)

and b is the toroidal flux density inside the convection zone:

b(θ, t) =
∫ R⊙

0.7R⊙
B(r, θ, t)rdr. (9)

Except for the exponent n in the sinn θ terms, these expressions
are the same as in Paper I and their derivation can be found there.

The source term above (S) is that of the ϕ-component of
the poloidal vector potential A. But the more physically relevant
quantity is the radial field generation rate at the surface (Cloutier
et al. 2024, hereafter Paper II, see also Appendix A), which from
the definition of A (Eq. (1) of Paper I) is readily found to be given
by

S r(R⊙, θ, t) =
1

R2
⊙ sin θ

∂

∂θ

(
sinn+1 θ sin δ

b(θ, t)
τ0

)
. (10)

Regularity of the source term at the poles is ensured as long as
n ≥ 1 (see second form of Eq. (A.1)).

2.4.1. Latitudinal emergence probability

The sinn θ terms allow us to study cases where emergence at low
latitudes is explicitly imposed (Karak & Cameron 2016). In the
first set of models, we will vary the value of n from 1 to 12.
The resulting models are linear, and we will choose the values
of τ0 and γ0 so that they are critical with a period of 12 years
(the average period of cycles 23 and 24). The linearity of the
model also means that the fields can be arbitrarily scaled. We
normalize the fields so that the maximum net toroidal flux in one
hemisphere (here the northern) is max(Φ) = 5× 1023 Mx, where

Φ(t) =
∫ π

0
b(θ, t)dθ. (11)

This value is consistent with the estimates of Cameron &
Schüssler (2015).

2.4.2. Two-regime threshold

In the second set of models the value of n will be fixed to 1,
representing an emergence probability constant per unit length
of toroidal field lines. But we will set a threshold Bthresh in the
average toroidal field B between two emergence regimes τslow

0
and τfast

0 . This second emergence rate model is motivated by the
observed toroidal field maps which show much stronger values
of surface Bϕ when active regions begin to emerge, suggestive of
a switch between slow and rapid emergence once some threshold
is met (see also Cameron & Jiang 2019; Biswas et al. 2022).

We define the average toroidal field for this purpose to be

B(θ, t) =
∫ R⊙

0.7R⊙
B(r, θ, t)rdr

/ ∫ 0.8R⊙

0.7R⊙
rdr =

b(θ, t)
0.075R2

⊙

, (12)

where we made the approximation that the toroidal field is stored
uniformly in the lower half of the convection zone. Then, we
introduce a threshold on B, which is equivalent to one on b,

bthresh = 0.075R2
⊙Bthresh, (13)

and use it to determine whether flux emergence should be fast or
slow:

τ0(θ, t) =
{
τslow

0 b(θ, t) < bthresh,

τfast
0 b(θ, t) ≥ bthresh.

(14)

This threshold prescription makes the model non-linear.

2.4.3. Magnetic buoyancy

Parker (1955) and Jensen (1955) independently showed that
magnetic flux tubes initially in thermal equilibrium are buoyant.
When they are solely resisted by aerodynamic drag, such flux
tubes will float to the surface with terminal rise velocities of the
order of the Alfvén velocity (Parker 1975),

vB ∼ vA =

(
vA

vc

)
vc =

∣∣∣∣∣∣ B
Beq

∣∣∣∣∣∣ vc, (15)

vA = |B|/
√
µ0ρ and vc being respectively the Alfvén velocity and

convective velocity given by mixing-length theory (MLT, Prandtl
1925; Vitense 1953; Böhm-Vitense 1958), and Beq =

√
µ0ρvc

the equipartition field strength. Taking into account viscous drag
and assuming the turbulent viscosity to be given by MLT, the
terminal rise velocity of the flux tube is instead of the order of
(Unno & Ribes 1976)

vB ∼

(
vA

vc

)
vA =

(
vA

vc

)2

vc =

(
B

Beq

)2

vc. (16)

Note that for both cases, the relevant magnetic field B is that of
the total field.

Kichatinov & Pipin (1993), however, argued that one should
instead consider magnetic buoyancy within the framework of
mean-field electrodynamics (Moffatt 1978; Krause & Rädler
1980). Employing the second-order correlation approximation,
the authors found the same buoyant velocity dependence on
(B/Beq)2 as that found by Unno & Ribes (1976), but with
a quenching term due to magnetic tension. For strong mean
toroidal fields the rise velocity decreases as (B/Beq)−1/2. In tak-
ing into account magnetic buoyancy in our model, we will con-
sider both rise velocities given by Eqs. (15) and (16). For sim-
plicity we do not consider any effect due to magnetic tension.

Given the implicit condition behind our source and loss
terms, that there is a continuous emergence of sunspots over
timescales over which the configuration of the mean field
changes appreciably (cf. Paper I), the emergence rate should be
proportional to a representative buoyant terminal rise velocity
inside the convection zone. Hence, under these assumptions, the
timescale parameter is given by

τ−1
0 =

∣∣∣∣∣∣ B
Beq

∣∣∣∣∣∣
m (
τb

0

)−1
=

∣∣∣∣∣∣ b
beq

∣∣∣∣∣∣m (
τb

0

)−1
, (17)

where τb
0 is now the free parameter. The above prescriptions of

Parker (1975) and Unno & Ribes (1976) are given by m = 1 and
m = 2 respectively. For m > 0 the source and loss terms be-
come non-linear in the magnetic field and thus can, in principle,
provide a saturation mechanism for the dynamo. Because we
expect the toroidal field to be concentrated at low latitudes,
this prescription should not be too dissimilar to the two-regime
threshold.

This idea has, in essence, first been proposed by Stix (1972)
in the context of a non-linear turbulent αΩ dynamo model. Non-
linear toroidal field loss due to magnetic buoyancy is not a new
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Fig. 2. Left panel: cycle-averaged butterfly diagram of Paper II. Middle panel: surface radial source term obtained from the left panel by "inverting"
a 1D surface flux transport model. Right panel: surface radial source term obtained from the surface toroidal field (not shown) using an emergence
model. See Paper II for more information. The dashed lines represent the location of maximum surface toroidal field.

feature of αΩ dynamo models (e.g. Schmitt & Schüssler 1989;
Moss et al. 1990b,a; Jennings & Weiss 1991). However, our BL
source and loss terms are linked (cf. Paper I), and so magnetic
buoyancy must be taken into account in the source term as well.
Jouve et al. (2010) and Fournier et al. (2018) have explored the
effect of an emergence delay dependent on the magnetic energy
of the toroidal field at the bottom of the convection zone, while
Karak & Miesch (2017) considered a varying emergence rate,
but for 3D models already including tilt quenching and neglect-
ing emergence loss.

3. Observational constraints

3.1. Sunspot number proxy

Flux emergence both removes toroidal magnetic flux from the
solar interior and creates poloidal field (and sunspots) at the solar
surface. The number of sunspots formed at the surface can be
estimated from the amount of toroidal magnetic flux which is
lost in the process. To do so, we first note that typical active
regions sizes are around dAR = 100 Mm. Hence, the rate at which
flux is generated in active regions is

dΦAR

dt
(t) =

2πR⊙
dAR

∫ π

0

∫ R⊙

0.70R⊙
|L(r, θ, t)|rdrdθ, (18)

where L is the BL loss term defined by Eq. (6). We then divide
this quantity by a representative value of the flux contained in
a sunspot, which we take to be ΦS = 1021 Mx, so that we have
a number of sunspots per year being generated. Assuming these
sunspots to have a lifetime of one month yields our sunspot num-
ber proxy:

R =
1
ΦS

∫ t

t−1 mth

dΦAR

dt
(t′)dt′. (19)

A quantity we will consider is the ratio of the sunspot number
at activity minimum to maximum,

∆R =
min(R)
max(R)

. (20)

It is a measure of the overlap between cycles.

3.2. Equatorward drift of the sunspot zones

An important discovery is that of Waldmeier (1939, 1955), who
found that the equatorward migration of the central heliographic
latitude of the sunspot zones, λc, is alike for all cycles, regardless
of cycle strength of phase. Indeed, choosing the reference times
of individual cycles to be the times of the first appearance of
sunspots belonging to those particular cycles (Waldmeier 1935),
rather than the times of activity minimum or maximum, the
λc-curves superpose; the equatorward drift of the activity belts
follows a standard path. This feature was further confirmed by
Hathaway (2011, hereafter H11). Employing a parametric func-
tion devised by Hathaway et al. (1994) to fit the monthly sunspot
number of individual cycles, H11 could determine the start times
of cycles 12 to 23 and rediscover the old finding of Waldmeier
(1939, 1955). Moreover, H11 could fit the centroid curves as

λc(t) = 28◦ exp
(
−

t − t0
90 mths

)
, (21)

where time is defined in months and the centroid latitude is λc.
This standard equatorward migration law is an observational

constraint on dynamo models. For our models, we will assume
the centroid latitude of the sunspot zone λc to be given by the lat-
itude where the toroidal flux density b is maximum. This latitude
closely corresponds to the emergence location of the mean bipo-
lar magnetic region (BMR), as demonstrated in Appendix A and
as inferred from the observations (Paper II, see Fig. 2). Since it
is difficult to define exactly when a cycle begins (the functional
form for the sunspot number given by H11 may not approximate
our sunspot number proxy), we choose the value of t0 so as to ob-
tain the best fit between the centroid latitude curves. As in H11,
we find that the start times of our model cycles do not coincide
with an activity minimum, here defined as the times where our
sunspot proxy R is minimum.

3.3. Polar and butterfly fields

Important observational constraints are the field strengths on the
solar surface. However, one must be careful to actually compare
the same quantities. The existence of an universal law of sunspot
belt migration means that cycles can be averaged together in
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Fig. 3. Time-latitude diagrams of the toroidal flux density b for different values of n: 1 (upper-left panel), 3 (upper-right), 6 (lower-left), and 12
(lower-right).

0 5 10 15 20 25 30 35 40 45 50
-90
-60
-45
-30
-15

0

15
30
45
60
90

λ
[◦

]

0 5 10 15 20 25 30 35 40 45 50
-90
-60
-45
-30
-15

0

15
30
45
60
90

0 5 10 15 20 25 30 35 40 45 50

Time [yrs]

-90
-60
-45
-30
-15

0

15
30
45
60
90

λ
[◦

]

0 5 10 15 20 25 30 35 40 45 50

Time [yrs]

-90
-60
-45
-30
-15

0

15
30
45
60
90

−100

0

100

S
r
(R
�

)
[G

/y
r]

−100

0

100

S
r
(R
�

)
[G

/y
r]

−100

−50

0

50

100

S
r
(R
�

)
[G

/y
r]

−50

0

50

S
r
(R
�

)
[G

/y
r]

Fig. 4. Time-latitude diagrams of the surface radial source term S r(R⊙) for different values of n: 1 (upper-left panel), 3 (upper-right), 6 (lower-left),
and 12 (lower-right).
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Fig. 5. Time-latitude diagrams of the surface radial field Br(R⊙) for different values of n: 1 (upper-left panel), 3 (upper-right), 6 (lower-left), and
12 (lower-right). The color scale is logarithmic to better show the different features.
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Fig. 6. Comparison of the H11 standard law of sunspot zone migration
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phase. This fact was pointed out in Paper II, where we further
obtained the cycle-averaged butterfly diagram presented in Fig.
2. The mean field strengths of the butterfly wings at cycle maxi-
mum Bb are around 2 G. Now, because of the open flux problem
(Linker et al. 2017), the mean polar field at cycle minima Bp
could be anywhere in the range of 3-15 G (Petrie 2015, although
it is more likely to be on the higher end, if not higher – on that
see Sinjan et al. 2024).

3.4. Toroidal flux loss timescale and cycle phase of polar
maxima

The toroidal flux loss timescale τ and its contributions due to
emergence τL and diffusive τη loss through the surface are as
defined in Paper I. We here again take their combination to be
τ−1 = τ−1

L +τ
−1
η . In this paper we calculate these timescales at the

time when the polar field reverses. The phase difference between
the polar field and cycle maxima ∆ϕ is also defined in Paper I.

4. Results

All solutions we present are predominantly of dipolar parity, al-
though our model does allow different parities. In terms of the
rush to the poles, it has only been observed for the dipole mode.
Therefore we restrict our analysis and discussion to the dipole
dynamo mode.

4.1. Models with an explicit preference for emergence at low
latitudes

To look into the effect of n on the latitudinal emergence proba-
bility, we computed critical linear models (Bthresh = 0 and m = 0)
with values of n = 1, 3, 6 and 12 (see Eqs. 5 and 6). The solu-
tions are shown in Figs. 3, 4 and 5, representing the toroidal flux
density b, the surface radial source term S r, and the surface ra-
dial field Br, respectively. The location of the maximum toroidal
field density is represented by a dashed line.

The n = 1 case is essentially the same as the reference
model of Paper I, the only difference being the differential ro-
tation profile. The lack of a distinct "rush to the poles" in the
butterfly diagram is obvious. As expected, increasing the value
of n forces emergences to occur at increasingly lower latitudes.
A high-latitude rush to the poles becomes noticeable at around
60◦ near cycle maximum for the n = 3 case. By n = 12, the rush

Table 1. Input parameters of threshold models

Model TA TB TC TD
τfast

0 [yrs] 10 9 15 5
γ0 [m/s] 15 12.5 25 12.5
ηCZ [km2/s] 10 10 20 10
Bthresh [kG] 1 1 1 1.35

Table 2. Output quantities of threshold models

Model TA TB TC TD
P [yrs] 12.1 12.1 13.1 12
Bp [G] 22.7 18.7 19.5 10.9
Bb [G] 4.8 4.1 3 4.7

Φm [1023 Mx] 5.8 4.3 6.2 3.9
max(R) 232 152 184 39
min(R) 87 39 63 20
∆R 0.37 0.26 0.34 0.51
τL [yrs] 16 19.1 21.8 71.8
τη [yrs] 47.8 31.6 94.2 38.3
τ [yrs] 12 11.9 17.7 25
∆ϕ [◦] 159 164 158 128

starts at about 30◦. The presence of a rush to the poles is not a
necessary consequence of the toroidal field being mostly stored
below 30◦. In fact, as it can be appreciated in Fig. 3, the toroidal
field is more confined to low latitudes in the n = 1 case. Espe-
cially in the n = 12 case, there is strong toroidal field at the poles
and significant field strengths at mid-latitudes. This is because
larger values of n cause more cross-equator poloidal flux cancel-
lation and hence stronger polar fields. The radial shear present
throughout the whole depth of the polar convection zone then
generates this high-latitude toroidal field. The pumping required
to obtain critical 12-year periodic solutions also decreases with
increasing n, causing more poloidal field to reach the poles. As
discussed in Paper I, stronger pumping is required in the n = 1
case to concentrate the toroidal field at low latitudes, ensuring
dynamo action. This is not necessary when n > 1 as high lati-
tude emergences are then inhibited.

Fig. 4 shows the poloidal field generation rate of the models,
which must be compared to the observationally-inferred one pre-
sented in Paper II and shown in Fig. 2. As in Paper II, we clearly
see two large regions where mean poloidal field of opposite po-
larities is being generated at each timestep. The lack of a rush
to the poles in the n = 1 case is due to the emergence of flux at
all latitudes; even though the toroidal field is concentrated near
the equator, there is still enough emergence happening at higher
latitudes to prevent the appearance of a rush to the poles. The
trailing spot fields migrating polewards from say 30◦ are weak,
being spread out over about 60◦ in latitude, and so the much
stronger leading spot fields emerging at low latitude emergences
dominate over them at mid-latitudes. In other words, what we see
at mid-latitudes is the poleward migration of the leading polarity
field. Increasing n reduces the high-latitude emergence rate and
hence allows the trailing polarity flux being advected towards the
poles to dominate at mid-latitudes and above.

Fig. 6 compares the observed rate of the equatorial drift of
sunspot zones (Eq. (21)) with that of the toroidal flux system for
the models discussed above. The model with n = 1 matches the
observed equatorial drift well, with models with other n match-
ing less well.
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Fig. 7. Time-latitude diagrams of the toroidal flux density b (top), sur-
face radial source term S r(R⊙) (middle), and surface radial field Br(R⊙)
(bottom) for Model TA.
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Fig. 8. Time-latitude diagrams of the toroidal flux density b (top), sur-
face radial source term S r(R⊙) (middle), and surface radial field Br(R⊙)
(bottom) for Model TB.
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Fig. 9. Time-latitude diagrams of the toroidal flux density b (top), sur-
face radial source term S r(R⊙) (middle), and surface radial field Br(R⊙)
(bottom) for Model TC.
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Fig. 10. Time-latitude diagrams of the toroidal flux density b (top), sur-
face radial source term S r(R⊙) (middle), and surface radial field Br(R⊙)
(bottom) for Model TD.
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Fig. 11. Comparison of the H11 standard law of sunspot zone migration
with that obtained by threshold models.

4.2. Models with either slow or fast emergence based on the
toroidal flux density

In this section we show a selection of models incorporating the
two-regime threshold described in Section 2.4.2. We computed
grids of models with different values of τ0 and γ0 for two values
of the threshold field, Bthresh = 1 kG and 1.35 kG, and bulk dif-
fusivity, ηCZ = 10 and 20 km2/s. We present four of the models
that best fit a number of observational constraints: the surface ra-
dial field inside the butterfly wings of ∼ 5 G, polar fields that are
not too strong, a cycle period reasonably close to 12 years, and
little flux emergence in the polar regions. The four solutions are
presented in Figs. 7, 8, 9, and 10, which we will respectively call
Model TA, TB, TC, and TD. The parameter values are found in
Table 1. The different output quantities are presented in Table 2.

All models now present a clear, strong, initial rush to the
poles. This is followed by a weak poleward surge of leading po-
larity near activity maxima, followed by more trailing polar flux
until the cycle ends.

The source term shows strong poloidal flux production at
the edges where the threshold condition is met. This is a con-
sequence of the fact that the threshold introduces a discontinuity
in S , which is the source term in the equation for A. In the ab-
sence of diffusion, the resulting discontinuity in S leads to a delta
function in S r. The presence of diffusion smooths these singular
features.

As in Biswas et al. (2022), the presence of a threshold in flux
emergence and the flux depletion associated with it causes the
dynamo to saturate. Because it is the amount of leading poloidal
flux cancelling across the equator that determines the strength
of the Sun’s dipole, emergences at high latitudes are inefficient
at generating polar fields (Jiang et al. 2014). As stronger cy-
cles present emergences at higher latitudes than weaker ones,
the polar field at cycle minimum is weaker and consequently
so is the subsequent cycle. This saturation mechanism is known
as latitudinal quenching (Jiang 2020; Karak 2020; Talafha et al.
2022). For the particular model parameters chosen here, latitudi-
nal quenching, by itself, is not sufficient to saturate the dynamo.
The addition of emergence loss causes the early, high-latitude
emergences of stronger cycles to deplete the subsurface toroidal
flux reservoir very quickly, enhancing the effect of latitudinal
quenching. Note that the observational results of Waldmeier are
seen as evidence for latitudinal quenching in the solar dynamo
(Waldmeier 1955; Cameron & Schüssler 2023). As explained by

Table 3. Input parameters of magnetic buoyancy models

Model BA BB BC BD BE BF
τb

0 [yrs] 72 72 72 72 72 72
γ0 [m/s] 30 30 30 30 100 30
ηCZ [km2/s] 35 35 10 10 35 35

L on off on on on on
m 2 2 2 1 2 2

cycle ⟨⟩ ⟨⟩ ⟨⟩ ⟨⟩ ⟨⟩ 23

Table 4. Output quantities of magnetic buoyancy models

Model BA BB BC BD BE BF
P [yrs] 14.6 9.2 10.7 10.6 13.3 12
Bp [G] 14.2 37.3 37.3 88.5 17.8 25.7
Bb [G] 2 17.6 12.3 28.4 2.9 4

Φm [1023 Mx] 5.3 9.9 9.9 26.5 6.2 7
max(R) 104 622 489 1405 159 206
min(R) 9 165 111 515 16 21
∆R 0.09 0.27 0.23 0.37 0.10 0.10
τL [yrs] 31.9 – 14 12.5 24.6 21.3
τη [yrs] 173.5 27 35.6 37.1 244 118
τ [yrs] 27 27 10.1 9.4 22.4 18.1
∆ϕ [◦] 138 144 155 170 146 157

Biswas et al. (2022), the non-linearity involving emergence loss
and the threshold makes the decline phase independent of cycle
strength.

We briefly explored the effects of varying the model param-
eters. Decreasing τfast

0 causes a narrowing of the butterfly wings
(compare Figs. 8 and 10), while increasing γ0 causes not only
a widening of the butterfly wings, but a stronger one during the
ascending phase of the cycle. Increasing ηCZ makes the period
longer and necessitates a significant increase of pumping. Bthresh
essentially sets the normalization of the magnetic field. Models
with values of Bthresh much larger than 1 kG have fields much too
strong compared to observations. This value of Bthresh is signifi-
cantly weaker than the equipartition value of 5−6 kG as inferred
from MLT (although it is in practice likely quenched by rotation
and magnetic fields).

Fig. 11 compares the H11 law with the equatorward migra-
tion of the toroidal flux system of threshold models. All models
reproduce the observed behaviour reasonably well.

4.3. Models where the emergence rate depends on magnetic
buoyancy

In this section we show a selection of models incorporating mag-
netic buoyancy in the source and loss terms, as described in Sec-
tion 2.4.3. Contrary to Section 4.2, all the models we present
have the same values of τb

0 = 72 yrs and γ0 = 30 m/s. The
model that best reproduce the observations with a "reasonable"
pumping amplitude will be our "reference model", with m = 2
and ηCZ = 35 km2/s (model BA). We then change individu-
ally a few parameters to study their effect on the solution; the
loss term switched off L = 0 (model BB), a weaker diffusivity
ηCZ = 10 km2/s (model BC), and the emergence rate propor-
tional to the toroidal field strength m = 1 (model BD – here
a lower diffusivity is necessary). They are presented in Figs.
12 to 15. Two additional models, which do not present suffi-
ciently different time-latitude diagrams to be shown, have been
computed. They are Model BE having a pumping amplitude of
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Fig. 12. Time-latitude diagrams of the toroidal flux density b (top), sur-
face radial source term S r(R⊙) (middle), and surface radial field Br(R⊙)
(bottom) for Model BA.
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Fig. 13. Time-latitude diagrams of the toroidal flux density b (top), sur-
face radial source term S r(R⊙) (middle), and surface radial field Br(R⊙)
(bottom) for Model BB.
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Fig. 14. Time-latitude diagrams of the toroidal flux density b (top), sur-
face radial source term S r(R⊙) (middle), and surface radial field Br(R⊙)
(bottom) for Model BC.
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Fig. 15. Time-latitude diagrams of the toroidal flux density b (top), sur-
face radial source term S r(R⊙) (middle), and surface radial field Br(R⊙)
(bottom) for Model BD.
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Fig. 16. Comparison of the H11 standard law of sunspot zone migration
with that obtained by buoyancy models.

γ0 = 100 m/s and Model BF using the meridional flow profile of
cycle 23. At mid-latitudes at the bottom of the convection zone,
the amplitude of the meridional flow is 4.8 m/s for cycle 23 and
3.6 m/s for cycle 24, meaning that in model BF this velocity is in-
creased from their average by 0.6 m/s. The input parameters and
output quantities are presented in Tables 3 and 4, respectively.

Model BA is, out of all the models presented in this paper,
the most solar-like. It reproduces a clear rush to the poles with-
out any opposite polarity surge. The width of the butterfly wings
is somewhat below 30◦, which is in good agreement with what
is found in Paper II for the observed mean butterfly diagram (see
also Fig. 2), and is only weakly dependent on the model parame-
ters. With Bb = 2 G, the field strength inside the butterfly wings
is consistent with that of the observed mean butterfly diagram of
Paper II (cf. Fig. 2). With Bp = 14.2 G, the polar field strengths
are also consistent with observations. The maximal value of the
net toroidal flux in one hemisphere is max(Φ) = 5.3 × 1023 Mx,
which is in good agreement with the estimates of Cameron &
Schüssler (2015). The phase difference between the poloidal and
toroidal fields, however, remains large at ∆ϕ = 138◦. This could
be due to our models being close to symmetric with respect to
cycle maximum. A faster rising phase would imply a stronger
rush to the poles, reversing the polar field more quickly. The
cycle period is also rather long at 14.6 yrs. It is possible to de-
crease the cycle period by either increasing turbulent pumping or
decreasing the diffusivity. The latter makes the model less solar-
like (see Fig. 14), while the former requires excessively strong
pumping velocities to significantly lower the cycle period. The
cycle period is independent of the value of τb

0. This is because
τb

0 combines with beq, which acts to normalize the magnetic field
strength. The value of τb

0 was chosen so that Bb = 2 G. The emer-

gence loss timescale is also constant during the declining phases
at τL = 32.4 yrs, where τη ≃ 180 yrs so that τ ≃ 27 yrs. This
is very close to the magnetic period of 29.2 years, and only a
factor of two larger than the rough 12-year estimate of Cameron
& Schüssler (2020).

To investigate the effect of the loss term on the solutions,
we computed Model BB (Fig. 13) where the loss term has been
turned off. Unlike for the threshold prescription, the dynamo still
saturates. A more precise look into the saturation of the buoy-
ancy dynamo is presented in Appendix A. Switching off the loss
term also leads to a shorter period, a full 5 years shorter (compare
with Paper I). Emergence loss could therefore play an important
role in setting the cycle period.

Model BC (Fig. 14) has a lower value of the bulk diffusivity.
The activity period is significantly decreased and is now only
10.7 years. Increasing the diffusivity, like turning on the loss
term, spreads out the subsurface toroidal field, slowing down
its build up near the equator. Weaker diffusivity also makes the
emergence loss timescale τL much closer to the activity period
(because the early strong emergences deplete the toroidal flux
very quickly), and the total toroidal flux loss timescale τ slightly
below it.

We also tested the effect of the value of m for the non-
linearity and computed Model BD (Fig. 15) where m = 1. The
butterfly wings are slightly wider than those of Model BC be-
cause of the decreased non-linearity. Interestingly, all output
quantities of Model BD in Table 4 are very close to those of
Model BC, which is the same save for a value of m = 2, except
for the quantities depending on the amplitude of the magnetic
field. For those, they are a bit more than a factor of two larger, so
that decreasing τb

0 can bring them in relatively good agreement.
Consequently, the degree of non-linearity has a weak effect on
the solutions.

Increasing the turbulent pumping amplitude by more than
a factor of two (Model BE) decreases the period by only 1.3
years. At a large value of 30 m/s, the time required for the mag-
netic field to reach the lower convection zone is already relatively
close to instantaneous with respect to the cycle period.

Using instead the meridional flow profile of cycle 23 (Model
BF), the period is decreased by a full 2.5 years, illustrating the
key role of the meridional flow on setting the cycle period. A
faster meridional flow also significantly decreases the emergence
loss timescale compared to the activity period. This is because
by compressing the toroidal field closer to the equator, a faster
meridional flow allows for stronger emergences to deplete the
subsurface toroidal field more quickly. We comment here that
the flow amplitudes at the bottom of the convection zone for cy-
cles 23 and 24 are both within the error bars of the helioseismic
inversions of Gizon et al. (2020), despite the resulting periods
differing by 2.5 years.

Comparing Figs. 12 and 2, we see that the agreement be-
tween our buoyancy model and observations is remarkable. The
shape of the butterfly wings and their width is very well repro-
duced. But the model surface radial source term is also very sim-
ilar to the observed one (obtained by "inverting" a 1D surface
flux transport model with the observed butterfly diagram – mid-
dle panel of Fig. 2). Even the location of maximum toroidal field
(corrected for the low resolution) is in agreement.

In Fig. 16 we compare the equatorial migration of the
toroidal flux of our buoyancy models with the observed sunspot
belt migration. For models BA to BD, the equatorial drift in the
model is substantially faster than what is observed (consistent
with the cycles being shorter). The match with observations is
improved if the pumping is strongly increased to 100 m/s (Model
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BE). For Model BF with a faster meridional flow, the agreement
is even better and remarkably good. The slowdown of the drift of
the sunspot zones compared to Eq. (21) about midway into the
declining phase seen for models BA, BE and BF is a feature also
appearing in the observations (cf. Fig. 5 of Hathaway 2011 and
Fig. 2 of Paper II).

The bulk turbulent diffusivity of 35 km2/s used in our buoy-
ancy models is about a factor of 30 lower than MLT estimates,
∼ 1000 km2/s (e.g. Muñoz-Jaramillo et al. 2011). In principle,
magnetic diffusivity can be significantly quenched both by rota-
tion and the magnetic field (Kitchatinov et al. 1994; Featherstone
& Hindman 2016; Hotta & Kusano 2021, see Cloutier 2024 for a
discussion on the matter). Furthermore, the corresponding MLT
convective length scale is that of the giant cells, which seem
to be ruled out by observations (Hanasoge et al. 2012; Gizon
et al. 2021). Mean-field theory predicts turbulent diffusivity to
be given by η = 1

3 v2
cτc (e.g. Kitchatinov et al. 1994), where

τc is the convective correlation time. Its value can be estimated
from helioseismology or local correlation tracking. With values
of vc ≃ 10 m/s and τc ≃ 1 month (Hathaway & Upton 2021),
η ≃ 86 km2/s. This is around a factor of 2 larger than the value
used in our buoyancy models, but is a factor of 10 smaller than
the MLT estimate. Lastly, we mention again the possible role of
the helioseismically-inferred meridional flow in contributing to
most of the total diffusivity in our models (Sect. 2.3).

5. Conclusion

The motivation behind this paper was to identify mechanisms
by which the rush to the poles could be reproduced in BL-FTD
models. A mechanism either suppressing at high latitudes or en-
hancing at low latitudes emergences is necessary, even if the
toroidal field is weak close to the poles and mostly stored near
the equator. An emergence probability quickly decreasing with
latitude is one such mechanism. The physical motivation in this
case would be related to the latitudinal dependence of the growth
rate of the instability giving rise to the emergence of flux tubes.
Alternatively, non-linear mechanisms such as a threshold in flux
emergence and an emergence rate based on magnetic buoyancy,
not only help reproduce the rush to the poles, but provide a
saturation mechanism for the dynamo. They produce latitudi-
nal quenching. Latitudinal quenching is believed to be related
to the solar cycle property that all cycles decline the same way
(Cameron & Schüssler 2023).

The "best fit" model butterfly diagrams making use of the
buoyancy prescription (Fig. 12) is strikingly similar to the mean
observed one (Fig. 2), as are the poloidal field generation rates.
The width of the butterfly wings is found to be only weakly de-
pendent on model parameters and is around ≲ ±30◦, in good
agreement with observations. It is the saturation of the dynamo
that controls this width. Moreover, the equatorward drift of the
activity belts is found to be in good agreement with that inferred
from observations, implying the toroidal field could be stored at
equatorial latitudes deep in the convection zone.

An interesting finding of this paper is just how much the de-
pletion of toroidal flux deep in the convection zone leading to
the emergence of poloidal flux at the surface lengthens the cy-
cle period for non-linear models. It may be slowed down by as
much as ≃ 60%, with the timescale associated with the toroidal
flux loss through the surface being comparable to the magnetic
period. What sets the cycle period could hence diverge from the
usual dynamo-wave-FTD dichotomy, emergence loss possibly
playing an important role.

We stress that our model incorporates the observed axisym-
metric flows (differential rotation and meridional circulation).
For this reason, our model cannot be easily used to draw in-
ferences about the dynamos of other stars. At the very least an
extension which models the differential rotation and meridional
circulation of other stars would be necessary.
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Fig. A.1. Maximal value of ∂ ln b/∂θ possible for the generation of lead-
ing polarity field at latitude λ for values of n = 1, 3, 6, 12 (solid, dash-
dotted, dashed and dotted lines respectively). Blue, green and red lines
represent cases where m = 0, m = 2 and constant tilt angle.

Appendix A: Saturation of the buoyancy dynamo

That our models with the buoyancy prescription (m > 0) satu-
rate even with the loss term turned off, means that the latitudinal
quenching of the buoyancy dynamo is much stronger than that of
the threshold dynamo. To shed light on this matter, it is advanta-
geous to look not into the usual source term for the ϕ-component
of the poloidal vector potential A (Eq. (5)), but into the source
term for the radial field at the surface (Eq. (10)). It can be rewrit-
ten as

S r(R⊙, θ, t) =
1

R2
⊙ sin θ

∂

∂θ

sinn+1 θ sin δ

∣∣∣∣∣∣b(θ, t)
beq

∣∣∣∣∣∣m b(θ, t)
τb

0


= − p(θ, t) sinn θ sin δ

∣∣∣∣∣∣b(θ, t)
beq

∣∣∣∣∣∣m b(θ, t)/R2
⊙

τb
0

,

(A.1)

where

p(θ, t) = −
(
(n + 1) cot θ +

∂ ln(sin δ)
∂θ

+ (m + 1)
∂ ln b
∂θ

)
. (A.2)

S r can be rewritten in a way formally similar to S (second equal-
ity) by introducing the polarity function p, which determines the
polarity of the radial field being generated. The minus sign was
chosen so that for p(θ, t) > 0 the polarity being generated is that
of the leading spot (in the Northern hemisphere).

Setting p = 0 yields the latitude where the switch in polarity
of the average BMR occurs, in other words the location of the
center of the mean BMR being generated. We thus have a condi-
tion on the maximal value of ∂ ln b/∂θ for leading spot polarity
to be generated:

∂ ln b
∂θ
<

tan θ − (n + 1) cot θ
m + 1

, (A.3)

where sin δ = 1
2 cos θ (Leighton 1969). This condition is shown

in Fig. A.1 (blue and green lines). As we go equatorwards from

the poles, ∂ ln b/∂θ is positive and maximal close to the edge of
the low-latitude toroidal flux concentration, zero where the latter
is maximum, and negative very close to the equator. Wherever
the maximal b-gradient is negative, trailing polarity is generated.
The latitude where this gradient is zero, i.e. where the toroidal
flux density b is maximum, constitutes a lower bound on the
latitude of the mean BMR center.

Not unexpectedly, forcing emergences to occur at lower lati-
tudes by increasing the value of n shifts this mean BMR towards
the equator. One of the consequences is to increase the polar field
strength, as cross-equatorward flux cancellation of the leading
spot fields is increased. Increasing the non-linearity in b of the
source term, i.e. increasing the value of m, decreases the maxi-
mal b-gradient so that the center of the mean BMR is also shifted
equatorward.

If Joy’s law were to be constant with latitude (Fig. A.1, red
lines), leading spot polarity would be produced only very close
to the equator, after the maximum of b. If the average leading
spot was to be produced so close to the equator, most of the
leading flux would diffusively cancel across the equator and the
resulting polar field would be extremely large, not to mention
that the butterfly diagram would look very different from the ob-
servations. The exact form of Joy’s law thus largely sets what the
butterfly diagram looks like.

Examining Eqs. (A.1) and (A.2), we see that increasing the
toroidal flux density b does not shift the center of the mean BMR.
Taking the derivative of the second form of Eq. (A.1) with re-
spect to b yields

∂S r

∂b
(R⊙, θ, t) ∝ bm(θ, t). (A.4)

Increasing b everywhere by the same factor causes a linear or
non-linear increase of the radial source term (rather than a uni-
form increase), in such a way that the largest increase occurs
near the mean BMR center. The field is thus redistributed closer
to the center so that more intra-hemisphere flux cancellation oc-
curs and the polar field is weakened; this constitutes a saturation
mechanism. There is here an analogy with tilt quenching. It is
as if the tilt of the mean BMR was decreased, leading to less
cross-equator flux cancellation. This is, of course, not true tilt
quenching, as the tilt of the individual emergences is constant in
our models. The emergence rate simply changes as a function of
latitude in such a way that the mean BMR’s tilt appears smaller.

But this is not the entire picture. While a proportional in-
crease of b does not change the location of the mean BMR be-
ing generated, the non-linearity of the BL source term leaves
an imprint on the Ω-effect and the toroidal field it induces for
the next cycle. The distribution of the subsurface toroidal field
changes as well. If, because of this non-linearity, significant
toroidal field strengths are reached at higher latitudes, meaning
that we have a stronger cycle with broader sunspot zones, the b-
gradient is flattened, causing the mean BMR center to shift pole-
wards. This, in turn, weakens the polar fields through increased
cross-hemispheric flux cancellation of the generated radial field;
this corresponds to latitudinal quenching (not only in the sense
of the mean BMR). There is thus an interaction between the "tilt"
and latitudinal quenchings. They, however, act against each other
(as in Karak & Miesch 2017, where there is true tilt quenching).
The competition between both saturation mechanisms is what
controls the width of the butterfly wings (on that see also Karak
2020, although his model does not incorporate tilt quenching and
the latitudinal quenching arises from a latitudinal dependence on
the critical field strength required for flux emergence).
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